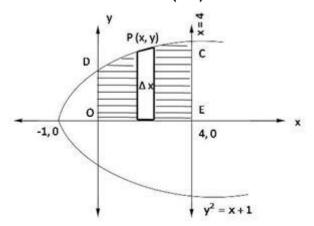
Question 7:

Sketch the graph of $y = \sqrt{x+1}$ in [0,4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4. Solution:


Solution.

We have to find area enclosed by x-axis and

$$y = \sqrt{x + 1}$$

$$\Rightarrow y^{2} = x + 1 \qquad ---(1)$$

and $x = 0 \qquad ---(2)$
 $x = 4 \qquad ---(3)$

Equation (1) represent a parabola with vertex at (-1, 0) and passing through (0,1) and (0,-1). Equation (2) is y-axis and equation (3) is a line parallel to y-axis passing through (4,0). So rough sketch of the curve is as below:-

We slice the required region in approximation rectangle with its Width = x, and length = y - 0 = y

Area of rectangle = $y \Delta x$.

Approximation rectangle moves from x = 0 to x = 4. So

Required area = Shaded region

$$= (\text{Re gion OECDO})$$

= $\int_{0}^{4} y dx$
= $\int_{0}^{4} \sqrt{x + 1} dx$
= $\left(\frac{2}{3}(x+1)\sqrt{x+1}\right)_{0}^{4}$
= $\frac{2}{3}\left[\left((4+1)\sqrt{4+1}\right) - \left((0+1)\sqrt{0+1}\right)\right]$

Required area = $\frac{2}{3} \left[5\sqrt{5} - 1 \right]$ square units